Построение углов на клетчатой бумаге

В сумке студента и школьника нечасто встречается транспортир, зато клетчатая бумага в тетрадях встречается сплошь и рядом. Имея её, можно без особого труда строить углы с довольно высокой точностью — во всяком случае, вполне достаточной, чтобы адекватно отразить на чертеже условия задачи.

Ключом к подобным «клетчатым» построениям углов является волшебное число 11. Если по клеткам нарисовать прямоугольный треугольник с одним катетом, равным 11 клеток, то выбор другого катета будет для этого треугольника давать следующие острые углы:

  • 1 клетка — 5° и 85°
  • 2 клетки — 10° и 80°
  • 3 клетки — 15° и 75°
  • 4 клетки — 20° и 70°
  • 5 клеток — 25° и 65°

Запомнить нетрудно: каждая клетка добавляет по пять градусов, и так до пяти клеток. Погрешность составит около половины градуса для катетов 5 и 11 клеток, в остальных случаях она значительно меньше.

Ещё полезно помнить, что прямоугольный треугольник с катетами 8 и 11 клеток имеет острый угол 36° (с очень хорошей точностью). Это позволяет строить правильные пятиугольники и десятиугольники.

Волшебные свойства числа 11 на этом не заканчиваются. Выпишем последовательно натуральные числа: 3,4,5,6,7,8. Будем выбирать из них «крайние» пары: 3 и 8, 4 и 7, 5 и 6. Как видно, в сумме они все дают опять-таки 11. Если брать эти пары в качестве катетов, то получающиеся прямоугольные треугольники будут иметь следующие углы:

  • 3 и 8 клеток — 20° и 70° (менее точно, чем для катетов 4 и 11 клеток)
  • 4 и 7 клеток — 30° и 60°
  • 5 и 6 — 40° и 50°

Ошибка составит около половины градуса для катетов 3 и 8 клеток, а в двух других случаях будет значительно меньше.

Отсюда следует способ построения по клеткам равностороннего треугольника: если взять горизонтальный или вертикальный отрезок 8 клеток и от его середины отступить в перпендикулярном направлении на 7 клеток, то получившийся равнобедренный треугольник будет практически равносторонним. Ошибка очень мала: для стандартной 5-мм клетки основание будет равно 4 сантиметра, а боковая сторона отличается от этой величины всего на 0.3 миллиметра. Это меньше, чем толщина карандашной линии.

Неплохо помнить ещё две пары катетов, дающих следующие острые углы:

  • 2 и 9 клеток — 12° и 78°
  • 1 и 10 клеток — 6° и 84°
Как видно, в сумме они составляют опять-таки 11. Наибольшая погрешность снова около половины градуса (у пары 2 и 9 клеток).

Эта клетчатая тригонометрия позволяет без проблем строить любые углы с шагом 5° без транспортира при неплохой точности.